Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 15(1): 77-90, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36270018

RESUMO

In the past two decades, important results have been obtained on the application of carbon nanotubes (CNTs) as components of smart interfaces promoting neuronal growth and differentiation. Different forms of CNTs have been employed as scaffolds, including raw CNTs and functionalized CNTs, characterized by a different number of walls, mainly single-walled CNTs (SWCNTs) or multiwalled CNTs (MWCNTs). However, double-walled carbon nanotubes (DWCNTs), which present interesting electronic and transport properties, have barely been studied in the field. Apart from the electrical conductivity, the morphology, shape, porosity, and corresponding mechanical properties of the scaffold material are important parameters when dealing with neuronal cells. Thus, the presence of open porous and interconnected networks is essential for cell growth and differentiation. Here, we present an easy methodology to prepare porous self-standing and electrically conductive DWCNT-based scaffolds and study the growth of neuro/glial networks and their synaptic activity. A cross-linking approach with triethylene glycol (TEG) derivatives is applied to improve the tensile performance of the scaffolds while neuronal growth and differentiation are promoted. By testing different DWCNT-based constructs, we confirm that the manufactured structures guarantee a biocompatible scaffold, while favoring the design of artificial networks with high complexity.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Neurônios , Diferenciação Celular/fisiologia , Porosidade
3.
ACS Appl Nano Mater ; 5(12): 17640-17651, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36583122

RESUMO

Nanoscale graphene-based materials (GBMs) enable targeting subcellular structures of the nervous system, a feature crucial for the successful engineering of alternative nanocarriers to deliver drugs and to treat neurodisorders. Among GBMs, graphene oxide (GO) nanoflakes, showing good dispersibility in water solution and being rich of functionalizable oxygen groups, are ideal core structures for carrying biological active molecules to the brain, such as the neuropeptide Y (NPY). In addition, when unconjugated, these nanomaterials have been reported to modulate neuronal function per se. Although some GBM-based nanocarriers have been tested both in vitro and in vivo, a thorough characterization of covalent binding impact on the biological properties of the carried molecule and/or of the nanomaterial is still missing. Here, a copper(I)-catalyzed alkyne-azide cycloaddition strategy was employed to synthesize the GO-NPY complex. By investigating through electrophysiology the impact of these conjugates on the activity of hippocampal neurons, we show that the covalent modification of the nanomaterial, while making GO an inert platform for the vectorized delivery, enhances the duration of NPY pharmacological activity. These findings support the future use of GO for the development of smart platforms for nervous system drug delivery.

4.
Sci Adv ; 8(32): eabp9257, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960795

RESUMO

Among emerging technologies developed to interface neuronal signaling, engineering electrodes at the nanoscale would yield more precise biodevices opening to progress in neural circuit investigations and to new therapeutic potential. Despite remarkable progress in miniature electronics for less invasive neurostimulation, most nano-enabled, optically triggered interfaces are demonstrated in cultured cells, which precludes the studies of natural neural circuits. We exploit here free-standing silicon-based nanoscale photodiodes to optically modulate single, identified neurons in mammalian spinal cord explants. With near-infrared light stimulation, we show that activating single excitatory or inhibitory neurons differently affects sensory circuits processing in the dorsal horn. We successfully functionalize nano-photodiodes to target single molecules, such as glutamate AMPA receptor subunits, thus enabling light activation of specific synaptic pathways. We conclude that nano-enabled neural interfaces can modulate selected sensory networks with low invasiveness. The use of nanoscale photodiodes can thus provide original perspective in linking neural activity to specific behavioral outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...